Slope Deflection Method

Example 1

The Slope Deflection Method is typically used for analyzing indeterminate structures, such as continuous beams and rigid frames. However, for determinate beams, this method is generally unnecessary because other simpler techniques like equilibrium equations (∑F = 0, ∑M = 0) or the method of sections are sufficient.
Study Duration
30 Min

Example 1:

Beam with Uniformly Distributed Load (UDL)


Problem Statement

A continuous beam ABBCAB - BC has equal spans L=6L = 6 m each. Span AB is subjected to a uniformly distributed load w=10 kN/m.



  • Span BC has no external loadSupports A and C are fixed, while B is continuous.


📌 Objective: Find the end moments MAB,MBA,MBC,MCBM_{AB}, M_{BA}, M_{BC}, M_{CB}.


Step 1: Identify the Beam and Boundary Conditions



  • Fixed at A and C: θA=0\theta_A = 0, θC=0\theta_C = 0.




  • B is continuous: MBA=MBCM_{BA} = M_{BC} (Moment equilibrium at B).




Step 2: Calculate Fixed-End Moments (FEMs)

For a UDL on a fixed-fixed beam, the fixed-end moments are:












FAB=wL212,FBA=wL212F_{AB} = -\frac{wL^2}{12}, \quad F_{BA} = \frac{wL^2}{12}
FBC=0,FCB=0F_{BC} = 0, \quad F_{CB} = 0

Substituting values:


FAB=(10)(62)12=30 kNm,FBA=+30 kNmF_{AB} = -\frac{(10)(6^2)}{12} = -30 \text{ kNm}, \quad F_{BA} = +30 \text{ kNm}
FBC=0,FCB=0F_{BC} = 0, \quad F_{CB} = 0


Step 3: Write Slope Deflection Equations

Using the slope deflection formula:




MAB=2EIL(2θA+θB)+FABM_{AB} = \frac{2EI}{L} (2\theta_A + \theta_B) + F_{AB}
MBA=2EIL(θA+2θB)+FBAM_{BA} = \frac{2EI}{L} (\theta_A + 2\theta_B) + F_{BA}
MBC=2EIL(2θB+θC)+FBCM_{BC} = \frac{2EI}{L} (2\theta_B + \theta_C) + F_{BC}
MCB=2EIL(θB+2θC)+FCBM_{CB} = \frac{2EI}{L} (\theta_B + 2\theta_C) + F_{CB}

Substituting L=6L = 6, E=EIE = EI:


MAB=2EI6(2(0)+θB)30M_{AB} = \frac{2EI}{6} (2(0) + \theta_B) - 30
MBA=2EI6(0+2θB)+30M_{BA} = \frac{2EI}{6} (0 + 2\theta_B) + 30
MBC=2EI6(2θB+0)+0M_{BC} = \frac{2EI}{6} (2\theta_B + 0) + 0
MCB=2EI6(θB+0)+0M_{CB} = \frac{2EI}{6} (\theta_B + 0) + 0

Simplifying:


MAB=EI3θB30M_{AB} = \frac{EI}{3} \theta_B - 30
MBA=2EI3θB+30M_{BA} = \frac{2EI}{3} \theta_B + 30
MBC=2EI3θBM_{BC} = \frac{2EI}{3} \theta_B
MCB=EI3θBM_{CB} = \frac{EI}{3} \theta_B


Step 4: Apply Boundary Conditions

Since B is continuous, moment equilibrium at B:




MBA+MBC=0M_{BA} + M_{BC} = 0

Substituting values:


2EI3θB+30+2EI3θB=0\frac{2EI}{3} \theta_B + 30 + \frac{2EI}{3} \theta_B = 0
4EI3θB=30\frac{4EI}{3} \theta_B = -30
θB=30×34EI=904EI=452EI\theta_B = -\frac{30 \times 3}{4EI} = -\frac{90}{4EI} = -\frac{45}{2EI}


Step 5: Calculate Final Moments

Substituting θB=452EI\theta_B = -\frac{45}{2EI}:




MAB=EI3×(452EI)30=45630=7.530=37.5 kNmM_{AB} = \frac{EI}{3} \times \left(-\frac{45}{2EI}\right) - 30 = -\frac{45}{6} - 30 = -7.5 - 30 = -37.5 \text{ kNm}
MBA=2EI3×(452EI)+30=906+30=15+30=15 kNmM_{BA} = \frac{2EI}{3} \times \left(-\frac{45}{2EI}\right) + 30 = -\frac{90}{6} + 30 = -15 + 30 = 15 \text{ kNm}
MBC=2EI3×(452EI)=15 kNmM_{BC} = \frac{2EI}{3} \times \left(-\frac{45}{2EI}\right) = -15 \text{ kNm}
MCB=EI3×(452EI)=7.5 kNmM_{CB} = \frac{EI}{3} \times \left(-\frac{45}{2EI}\right) = -7.5 \text{ kNm}


Final Moments:




  • MAB=37.5M_{AB} = -37.5 kNm




  • MBA=+15M_{BA} = +15 kNm




  • MBC=15M_{BC} = -15 kNm




  • MCB=7.5M_{CB} = -7.5 kNm

Text Lesson 1/2
You are viewing
Example 1